

Effects of Space Weather on Ionospheric Irregularities: from Measurements and Understanding to Prediction

Xiaoqing Pi

Jet Propulsion Laboratory, California Institute of Technology

Living Planet Symposium, Milan, Italy, May 15, 2019

© 2019 California Institute of Technology. U.S. Government Sponsorship Acknowledged.

Outline

- Measurements of ionospheric irregularities and scintillation using Global Navigation Satellite System (GNSS) signals
 - ✓ ROTI vs. S₄ and σ_{ϕ}
 - ✓ Global Map of Ionospheric Irregularities (GMII)
- Effects of ionospheric scintillation on GNSS and synthetic aperture radar (SAR) applications
- Effects of space weather on ionospheric irregularities
 - ✓ Polar regions
 - ✓ Sub-auroral and mid-latitude regions
 - ✓ Low latitudes
- Assimilative modeling of large-scale ambient ionospheric variations that indicate the dynamical effects of space weather events
 - ✓ Relationship between small-scale irregularities and large-scale variations
- A path to prediction of occurrence of ionospheric irregularities

Low-Latitude (Arequipa, Peru) Ionospheric Irregularities Measured Using Geodetic-Type GPS Receivers

Scale size of irregularities: a few tens kilometers

ROTI: Measurement of Ionospheric Irregularities Using Geodetic-Type GPS Receivers

Ionospheric Scintillation & Irregularity Indices

$$S_4(f) = \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}} \propto f^{-\alpha}$$

$$\sigma_\phi(f) = \sqrt{\langle \phi^2 \rangle - \langle \phi \rangle^2} \propto f^{-1}$$

$$ROT = C \frac{\Phi_I(t + \Delta t) - \Phi_I(t)}{\Delta t}$$

$$ROTI = \sqrt{\langle ROT^2 \rangle - \langle ROT \rangle^2}$$

S_4 – amplitude scintillation index σ_{ϕ} – phase scintillation index

- Frequency-dependent indices
- Covering the effects of irregularities at smaller scales (data at high sampling rate, 50 or 100 Hz)
- Measurements of phase scintillation require high-quality local oscillators in the receiver

ROTI – Rate of TEC index

- Independent of radio frequency
- ROT sampled at ∆t from 30 sec to 1 sec, losing smaller-scale samples
- Not susceptible to local oscillator errors
- > 10³ stations globally!

Fig. 5. A composite spectrum summarizing intensity of ionospheric irregularities as a function of wavenumber over a spatial scale from the electron gyro-radius to the radius of earth. (After Booker [46].)

Relationship between ROTI, S₄ and σ_{ϕ} :

Occurrence Related, but Magnitude Complicated!

[Beach and Kintner, 1999]

Auroral Zone

Low latitudes

- Occurrence is correlated
- High latitudes
 - ightharpoonup ROTI and σ_{ϕ} correlated in occurrence, but not necessarily in magnitude
 - \triangleright S₄ may not be correlated with σ_{ϕ} and ROTI
- Middle latitudes
 - Can occur during some storms, but not well studied

Global Map of Ionospheric Irregularities (GMII) under Nominal Conditions: Low-Latitude Irregularities

Irregularities in the Auroral Zone During Intense Auroral Electrojet Events (17 March 2015)

Irregularities Expanded to Middle Latitudes during the 2015 St. Patrick's Day Storm

Irregularities in the Polar Cap, Auroral Zone, and Low Latitudes during the 17 March 2015 Storm

Comparison of Positioning Errors between Quiet & Perturbed Space Weather Conditions

Contamination of ALOS PALSAR Images due to lonospheric scintillation

- Examples of geocoded PALSAR images over a South America low-latitude region near (2°S, 290°E) at about 03:19 UT on October 31, 2010.
- The red lines indicate the orientation of the ambient geomagnetic field (B₀).
- Streaks appear periodically in the direction

 B₀ and spaced at ~km to sub-kilometer.
- Effects are identified as due to ionospheric scintillation

A Survey of Contaminated SAR Images over South America

A survey of SAR image artifacts

Period: Oct 2010

Total images: 2779

Artifacts seen in

▶ 14% of images

74% of days in the month

 Only appear in images in ascending paths (10 PM) at low-latitudes

Correlation between SAR artifacts and GPS Measured scintillation

Days in October 2012 when the streak artifacts are not seen in PALSAR images over South America.

SAR measure-ments

Day	05	06	11	12	14	19	24	30
# of images collected	61	75	10	51	78	79	127	20

- The streak artifacts in SAR images are not seen when scintillation is not present
- Scintillation occurs exclusively during evening and night hours at low latitudes
- (ALOS-2 orbit: 12AM/12PM)

Interactions between Ring Current and Plasmasphere

- Ring current region expands into the plasmasphere
- Interactions between the ring current & plasmasphere:
 - ✓ Auroral oval expansion
 - ✓ Stable auroral red (SAR) arc or the mid-lat trough shifted to lower latitudes
 - ✓ Electrodynamical perturbations: SAPS/SED, E penetration → lat gradient in E, Kelvin-Helmholtz instabilities → plasma blobs, undulations etc.
 - ✓ MIDLIIS

Auroral Oval Expansion & Ring Current Enhancement

time

time

substorm cycle

DMSP Auroral Images

Longitudinal Variability of Low-Latitude Irregularities: Climatology

Impact of Space Weather on Low-Latitude Irregularities

Longitudinal Difference

Impact of Space Weather on Low-Latitude Irregularities Longitudinal Difference

Global Irregularity Activities at Low-Latitudes

Space Weather Conditions and Longitudinal Variations of Low-Latitude Irregularities

Growth Rate of Plasma Rayleigh-Taylor Instability and Driving Dynamics

Localized R-T instability growth rate:

$$\gamma_{GD} = \left[\frac{c\mathbf{E} \times \mathbf{B}}{B^2} - \mathbf{U}_n - \frac{\mathbf{g}}{\nu_{in}} \right] \cdot \frac{\nabla \Sigma_{p_2}}{\Sigma_{p_1} + \Sigma_{p_2} + \Sigma_{p_3}} \left(\frac{\nabla n}{n} \right) \quad \text{[Zalesak et al., 1988]}$$

Fluxtube-integrated R-T instability growth rate:

$$\gamma_{RT} = \frac{\tilde{\Sigma}_{P,0}^F}{\tilde{\Sigma}_{P,0}^E + \tilde{\Sigma}_{P,0}^F} \left(V_p - U_L^P - \frac{g_e}{\nu_{eff}^F} \right) K^F - R_T$$

[Haerendel, 1973; Haerendel et al., 1992; Mendillo et al., 1992; Sultan, 1996]

Enhanced Vp (upward plasma drift, or eastward electric field):

— Enhanced (and widened) equatorial ionospheric anomaly (EIA)

Enhanced equatorward wind, or westward E-field:

Reduced or depleted EIA

Global Assimilative Ionospheric Model (GAIM) to Reproduce Large-Scale Variations

- Time dependent
- 3D grid in a magnetic frame
- Numerically solving plasma continuity and momentum equations
- Finite volume on a fixed Eulerian grid
- Hybrid explicitimplicit time integration scheme

- GAIM++
- C++ code
- ✓ Multiple ion with plasmasphere
- ✓ Nested grid
- Improved magnetic field model

EIA Is Present in the Evening Sector (Pacific)

TEC [TECU]

TEC [TECU]

360° E

(Where Irregularities Are Inactive)

03-17-2015 TEC (storm)

03-16-2015

TEC (quiet)

GAIM BLKF 2015-03-17 08:48 UTC

180° E

270° E

03-17-2015 $n_m F_2$ (storm)

03-16-2015 $n_m F_2$ (quiet)

 $\Delta n_m F_2$

ΔTEC

0° E

90°E

EIA Diminishes in the Evening Sector (Europe/Africa)

(Where Irregularities Are Suppressed)

03-17-2015 TEC (storm)

03-16-2015 TEC (quiet)

ΔΤΕС

03-17-2015 $n_m F_2$ (storm)

03-16-2015 $n_m F_2$ (quiet)

 $\Delta n_m F_2$

EIA Enhances in the Evening Sector (Asia) (Where Irregularities Are Present)

EIA Enhances in the Evening Sector (America) (Where Irregularities Are Present)

03-18-2015 TEC (storm)

03-16-2015 TEC (quiet)

ΔΤΕС

03-18-2015 $n_m F_2$ (storm)

03-16-2015 $n_m F_2$ (quiet)

 $\Delta n_m F_2$

EIA Enhances in the Post-Midnight Sector (America) (Where Irregularities Are Present)

03-16-2015 TEC (quiet)

 ΔTEC

03-18-2015 $n_m F_2$ (storm)

03-16-2015 $n_m F_2$ (quiet)

 $\Delta n_m F_2$

A Path to Prediction

- Characterizing large-scale ionospheric variations under various space weather conditions
- Understanding their relationship with electrodynamical and thermospheric dynamical perturbations
- Establishing the relationship between large-scale ionospheric variations and occurrence of small-scale ionospheric irregularities
- Predicting the dynamical and large-scale ionospheric disturbances and then occurrence of small-scale irregularities
- Approaches
 - ✓ GNSS and other ionospheric for small-scale irregularities
 - ✓ Electrodynamical and thermospheric measurements for dynamics
 - ✓ Global Assimilative Ionospheric Model for ionospheric state and dynamics
 - ✓ ITM coupled model for dynamics
 - √ Validation
 - ✓ Data driven techniques through machine learning with long-term existing global GNSS data

Conclusions

- Impact of ionospheric scintillation on GNSS and InSAR applications has been observed in GNSS positioning applications and InSAR imagery
- Irregularities can be triggered, enhanced, or suppressed under perturbed space weather conditions in the polar, mid-latitude, or low-latitude regions
- There exist relationships between large-scale ionospheric variations and occurrence of small-scale ionospheric irregularities, and the relationships can help identify ambient ionospheric conditions and underline dynamical effects that trigger, enhance, or suppress ionospheric irregularities
- Characterization of the relationship between large- and small-scale variations can help understand the mechanisms of irregularity development
- Prediction of ionospheric irregularities and scintillation can benefit from modeling large-scale variations and observations of small-scale irregularities